Hydrogen Transfer from CpRe(CO)₂H₂ to *trans***-Ir(CO)(Cl)(PPh₃)₂ via a Heterobimetallic Re-Ir Intermediate**

Charles P. Casey* and Edward **W.** Rutter, **Jr.**

Received September 25, 1989

The reaction of $CpRe(CO)_2H_2(3)$ with trans-Ir(CO)(Cl)(PPh₃)₂ (4) led to the formation of $CpRe(CO)_3$ (14) and of equimolar amounts of $H_2Ir(PPh_3)_{2}(CO)(Cl)$ (15) and mer-H₂Ir(PPh₃)₃(CI) (16). When the reaction was carried out in the presence of added PPh,, only **14** and **16** were formed. When the reaction was carried out under a CO atmosphere, only **14** and **15** were formed. Reaction of 3 with (PPh₃)₃(CO)IrH led to the formation of 14 and fac- and mer-IrH₃(PPh₃)₃ (20). These reactions are proposed to proceed by oxidative addition of a rhenium-hydrogen bond to an iridium center. The resulting heterobimetallic dihydride intermediate then rapidly decomposes by simultaneous transfer of **H** from Re to Ir and transfer of CO from Ir to Re.

Introduction

For several years, we have been searching for new routes to heterobimetallic dihydrides, since we anticipated that such comproach, we synthesized heterobimetallic species such as the molybdenum-iridium compound **l** in which the two metals were

linked by a metal-metal bond and by a heterodifunctional ligand.¹ We hoped to oxidatively add H₂ to the coordinatively unsaturated iridium center to produce an iridium dihydride **(2),** which then might reductively eliminate molybdenum hydride to produce a compound with terminal hydride ligands on each of two different metals. Oxidative addition of H₂ to 1 proceeded smoothly at room temperature and atmospheric pressure. However, we failed to observe reductive elimination of molybdenum hydride.

This failure to observe reductive elimination from **2** may well be due to a fundamental thermodynamic problem involving the net loss of a metal-metal bond in elimination of a metal hydride
from any M' - MH_2 system.
 $M \rightarrow W_1$, \rightarrow M^{*-H} from any M' - MH_2 system. e elimination of molybdenum

observe reductive elimination

amental thermodynamic probl

al-metal bond in elimination of

H₂ system.

M-M⁺H₂

H

By focusing on the importance of the metal-metal bond, we noted that the addition of a metal dihydride to a coordinatively unsaturated metal center should be thermodynamically favorable, since the process involves a net gain of a metal-metal bond. To initially explore this possibility, we began with the studies reported here of the reaction of the third-row metal dihydride CpRe- $(CO)_2H_2(3)$ with Vaska's compound *trans*-Ir $(CO)(Cl)(PPh_3)_2$ (4) ⁴

Only a small number of heterobimetallic compounds with hydride ligands on different metals have been reported. One of the

- **(I)** Casey, C. P.; Bullock, R. M.; Nief, F. *J. Am. Chem. SOC.* **1983,** *105,* **7574.**
- **(2)** Casey, C. P.; Palermo, R. **E.;** Rheingold, A. L. *J. Am. Chem. Soc.* **1986,** *108,* **549.**
- **(3)** Bullock, R. M.; Casey, C. P. *Acc. Chem. Res.* **1987,** *20,* **167.**
- **(4)** A preliminary communication has appeared: Casey, C. P.; Rutter, E. **W.,** Jr.: Haller, K. J. *J. Am. Chem. SOC.* **1987,** *109,* **6886.**

num dihydride 5, which reversibly loses hydrogen.⁵ (The ¹H

NMR spectrum of **5** led the authors to depict it as having two bridging hydrides. However, as drawn, **5** has a formal 20-electron count at each metal center. An 18-electron count can be achieved by drawing *5* with a single bridging hydride, a terminal hydride on ruthenium, and no additional metal-metal bond. Rapid exchange of bridge and terminal hydrides would give the observed spectra.) Compounds such as **6** and **7,** which contain hydrides

bridging between tungsten and Pt or Rh, have been studied by Venanzi⁶ and by Moore.⁷ Other very interesting heterobimetallic hydrides include Venanzi's iridium-platinum complex **8,** which contains both bridging and terminal hydrides,⁸ Venanzi's Rh-Ir complex **9,9** van Koten's palladium-platinum dihydride **10,'O** Geoffroy's iron-iridium tetrahydride 11,¹¹ Schubert's manga-

- **(5)** Chaudret, B.; Dahan, F.; Sabo, *S. Organometallics* **1985,** *4,* **1490.**
- *(6)* Albinati, A.; Naegeli, R.; Togni, A,; Venanzi, L. M. *Organometallics* **1983,** *2,* **926.**
- **(7)** Howarth, **0.** W.; McAteer, C. **H.;** Moore, P.; Morris, **G.** E.; Alcock, N. W. *J. Chem. SOC., Dalton Trans.* **1982, 541.**
- (8) (a) Immirzi, A.; Musco, A.; Pregosin, P. S.; Venanzi, L. M. Angew.
Chem., Int. Ed. Engl. 1980, 19, 721. (b) Albinati, A.; Emge, T. J.;
Koetzle, T. F.; Meille, S. V.; Musco, A.; Venanzi, L. M. Inorg. Chem. **1986, 25,4821.**
- **(9)** Musco, A.; Naegeli, R.; Venanzi, L. M.; Albinati, A. *J. Organomet. Chem.* **1982,** *228,* **C15.**
- **(IO) Grove,** D. M.; van Koten, **G.;** Ubbels, **H. J.** C.; Spek, A. L. *J. Am. Chem. SOC.* **1982,** *104,* **4285.**

nese-platinum dihydrides 12 ,¹² and our RePtH₂, $13⁴$

Results

The reaction of $CpRe(CO)$, H, $(3)^{13}$ with *trans*-Ir(CO)(Cl)- $(PPh₃)₂$ (4)¹⁴ was explored as a possible route to the heterobimetallic dihydride $\text{Cp(CO)}_2(\text{H)Re-Ir(H)(CO)(PPh_3)}_2\text{Cl}$ (I). When a solution of 3 (2 mg, 6.5 μ mol) and 4 (4 mg, 5.1 μ mol) in C_6D_6 (0.40 mL) was monitored by ¹H NMR spectroscopy using C_6Me_6 as internal standard, a slow reaction with a time for the half-reaction of 4 days was observed, which produced $CpRe(CO)$, (14) ¹⁵ (77%) and an equimolar mixture of $H_2Ir(PPh_3)_2(CO)(Cl)$ $(15)^{16}$ (39%) and mer-H₂Ir(PPh₃)₃Cl (16)¹⁷ (39%). **15** was

identified by its hydride resonances at δ -6.68 (td, J_{PH} = 16.5 Hz, J_{HH} = 4.9 Hz) and -17.49 (td, J_{PH} = 13.2 Hz, J_{HH} = 4.9 Hz). **16** was identified by its hydride resonances at δ -10.67 (dtd, $J_{PH(trans)} = 130.3$ Hz, $J_{PH(cis)} = 19.8$ Hz, $J_{HH} = 4.9$ Hz) and -20.49 (qd, J_{PH} = 14.9 Hz, J_{HH} = 4.9 Hz). Neither the anticipated addition product $Cp(CO)_{2}(H)Re-Ir(H)(CO)(PPh_{3})_{2}Cl$ (I) nor any other intermediate was observed.

In an effort to intercept possible intermediates, we carried out the reaction in the presence of added CO or PPh,. When the reaction of $\text{CpRe(CO)}_2H_2(3)$ with trans-Ir(CO)(Cl)(PPh₃), (4) in C_6D_6 was carried out under 0.8 atm of CO at 46 °C and monitored by ¹H NMR spectroscopy over 3 days, only H₂Ir- $(PPh_3)_2(CO)(Cl)$ (15) (79%) and CpRe(CO), (14) (92%) were observed. No H₂Ir(PPh₃)₃CI (16) was seen. On a preparative scale, reaction of a slurry of 3 with 4 in C_6H_6 under 0.85 atm of CO over 13 days led to the isolation of $H_2Ir(PPh_3)_2(CO)(Cl)$ (15) in 74% yield and $CpRe(CO)$, (14) in 91% yield.

When the reaction of 3 with 4 in the presence of PPh_3 was monitored by ¹H NMR spectroscopy at 46 °C over 4 days, only $CpRe(CO)$ ₃ (14) (80%) and *mer*-H₂Ir(PPh₃)₃Cl (16) (78%) were observed. No $H_2Ir(PPh_3)_2(CO)(Cl)$ (15) was seen. Furthermore, since less than 1% of $CpRe(CO)_2(PPh_3)$ (17)¹⁸ was observed by 'H NMR analysis, the coordinatively unsaturated intermediate CpRe(CO), **(11)** cannot be involved in this reaction. In a preparative-scale reaction, mer-H₂Ir(PPh₃)₃Cl (16) (80%) and $CpRe(CO)$ ₃ (14) (80%) were isolated.

The possibility that iridium dihydrides 15 and 16 are formed by reaction of Vaska's complex with H_2 gas derived from $CpRe(CO)_{2}H_{2}$ (8) can be discounted since Graham has demonstrated that $\text{CpRe}(\text{CO})_2\text{H}_2$ (3) is stable to over 140 °C in solution.^{13a}

In another effort to prepare a heterobimetallic dihydride, we studied the reaction of $\text{CpRe}(\text{CO})_2\text{H}_2(3)$ with (PPh₃)₃(CO)IrH **(19).19** Although **19** is a coordinatively saturated 18-electron complex, it readily undergoes oxidative addition reactions with silanes and H_2 via a coordinatively unsaturated 16-electron in-

- **Breen, M. J.; Geoffroy,** *G.* **L.; Rheingold, A. L.;** Fultz, **W. C. J.** *Am. Chem. SOC.* **1983,** *105,* **1069.**
- **Kunz, E.; Muller, J.; Schubert, U. J.** *Organomef. Chem.* **1987,** *320,* **C1** I, (13) **(a) Hoyano, J. K.; Graham, W . A .** *G. Organometallics* **1982, I, 783. (b) Yang,** *G.* **K.; Bergman, R.** *G. J. Am. Chem.Soc.* **1983, 105,6500.**
- **(c) Yang,** *G.* **K.; Bergman, R.** *G. Organomerallics* **1985,** *4,* **129.** (14) **(a) Vaska, L.** *Acc.* **Chem.** *Res.* **1968, I, 335. (b) Collman, J. P.; Sears,**
-
- (16)
- (17)
- C. T., Jr.; Kubota, M. *Inorg. Synth.* **1968**, *11*, 103.
Green, M. L. H.; Wilkinson, G. J. Chem. Soc. **1958**, 4314.
Vaska, L.; DiLuzio, J. W. J. Am. Chem. Soc. **1962**, 84, 679.
Vaska, L. J. Am. Chem. Soc. **1961**, 83, 756. (18) **1976, 612.**
- **Wilkinson.** *G. Inorg. Synth.* **1972,** *13,* **126.**

termediate $(PPh_3)_{2}(CO)$ IrH.^{20,21} When the reaction of 3 (9 mg, 29.1 μ mol) with **19** (29 mg, 26.4 μ mol) in C₆D₆ (0.58 mL) was monitored by 'H NMR spectroscopy, a slow reaction was observed, which was complete in 2 days. The ultimate products observed by NMR analysis were $CpRe(CO)$ ₃ (14), the sole cyclopentadienyl-containing species, and a 1.8:1 mixture of fac- and mer-IrH₃(PPh₃), (20),^{22,23} the only hydride-containing species. In the initial stages of the reaction, the only trihydride seen was $fac-20$. The formation of *mer*-20 later in the reaction is presumably the result of equilibration of $fac-$ and mer-20. The 1.8:1 ratio of fac-20:mer-20 produced in the reaction of 3 with 19 is somewhat different from the 1.25:l ratio of isolated yields from the reaction of $Na₃IrCl₆$ with $NaBH₄²²$ Harrod has observed similar equilibration of fac- and mer-(PPh₃)₂(CO)IrH₃ by reversible elimination-addition of H_2 .²¹

The reaction of 3 with the more electron-rich iridium complex *trans*-(PEt₃)₂(CO)IrCl (21)²⁴ was studied in the hope that oxidative addition of rhenium dihydride might be accelerated so that a heterobimetallic dihydride might be observed. However, no reaction was observed by ¹H NMR spectroscopy in toluene- d_8 below -25 °C, and starting at -6 °C, the formation of a hopelessly complex mixture was seen with more than 10 different multiplets between δ -8 and -28 in the metal hydride region of the ¹H NMR spectrum. The major cyclopentadienyl resonance was that of $CpRe(CO)$ ₃.

Our proposed mechanism for decomposition of the putative heterobimetallic dihydride intermediate requires a hydride on the rhenium center and a carbonyl on the iridium center (see Discussion). This suggested that a bimetallic species might be isolated in the absence of one of these structural features. The reaction of trans-Cp(CO)₂Re(H)(SiPh₃) (22)²⁵ with trans-Ir(CO)(Cl)- $(PPh₃)₂$ (4) was briefly investigated in an effort to isolate a heterobimetallic compound. However, no reaction between these species was observed even upon heating at 74 °C for 1 day. The sterically huge SiPh, group on rhenium may have precluded formation of a heterobimetallic compound.

The reaction of **3** with the non-carbonyl-containing iridium complex $(PPh_3)_3$ IrCl $(23)^{26}$ was also briefly investigated. However, no reaction was seen over 2 months at room temperature. Once again steric hindrance may have prevented formation of a heterobimetallic compound.

Discussion

The reaction of $CpRe(CO)₂H₂$ with Vaska's compound can be understood in terms of the mechanism shown in Scheme I. We propose that addition of $CpRe(CO)_2H_2$ to iridium occurs to produce the originally desired heterobimetallic dihydride intermediate I, which immediately decomposes by transferring a second hydrogen from Re to Ir while back-transferring a carbonyl from Ir to Re via the $(\mu$ -H) $(\mu$ -CO) species III. This process explains the generation of coordinatively saturated $CpRe(CO)$, and of the coordinatively unsaturated Ir intermediate IV, which can be trapped by added PPh₃ or added CO. In the absence of added ligand, this unsaturated **Ir(Ill)** dihydride intermediate IV apparently abstracts either CO or $PPh₃$ from Vaska's complex.

Jones and Maguire have observed a similar transfer of two hydride ligands from Re to Ir in the reaction of $(\eta^4$ -C₅H₆)Re- $(PPh_3)_2H_3$ with (dppe)Ir(CO)(Br), which produces $(\eta^5-C_5H_5)$ - $Re(PPh₃)₂H₂$ and the thermodynamically favored isomer H_2 IrBr(CO)(dppe) (18T), which has the hydrides trans to phosphorus and bromide.²⁷ This observation excludes a mech-

- **Harrod, J. F.; Gilson, D. F. R.; Charles, R.** *Can. J. Chem.* **1969,** *47,* **2205.**
- **Harrod, J. F.; Yorke, W. J.** *Inorg. Chem.* **1981,** *20,* **11 56.**
- **Ahmad,** N.; **Robinson,** S. **D.; Uttley, M. F. J.** *Chem.* Soc.. *Dalton* (22) *Trans.* **1972, 843.**
- (23) **Morandini, F.; Longato, B.; Bresadola,** S. *J. Organomer. Chem.* **1977,** *132.* **291.**
- **Burk, M. J.; Crabtree, R. H.** *Inorg. Chem.* **1986,** *25,* **931.** (24) (25)
- **Dong, D. F.; Hoyano, J. K.; Graham, W. A.** *G. Can.* **J.** *Chem.* **1981,** *59,* **1455.**
-
- **Chini, P.; Longoni,** *G.* **J.** *Chem. SOC. A* **1970, 1542. Jones, W D.; Maguire,** J. **A. J.** *Am. Chem. SOC.* **1985,** *107,* **4544.**

Scheme I

Scheme I1

anism involving dissociation of $H₂$ from Re followed by oxidative addition of the liberated H_2 gas to (dppe)Ir(CO)Br, since this would have led to the formation of kinetic isomer **18K,** in which the hydrides are trans to CO and phosphorus.28 This kinetic isomer **18K** slowly isomerized to the more thermodynamically stable isomer **18T.** To explain these results, Jones and Maguire suggested that simultaneous transfer of two hydrides occurs via the 20-electron intermediate or transition state **V** (Scheme However, their experimental observations are also consistent with sequential hydride transfers involving only 18-electron intermediates. Our mechanism involving sequential transfer of hydrides does not involve any intermediate that exceeds an 18-electron count at either metal. These two mechanisms are kinetically indistinguishable, and no experiments have been designed to distinguish between the two proposals.

The reaction of $(\overrightarrow{PPh_3})_3(CO)$ IrH (19) with CpRe $(CO)_2H_2(3)$ apparently occurs by a mechanism similar to that proposed for the reaction of **3** with Vaska's compound **4.** In most oxidative additions to **19,** a PPh, ligand is lost from Ir.20,21 However, the reaction of 19 with $CpRe(CO)_2H_2(3)$ involves a very unusual loss of a tightly bound CO from Ir. The mechanism shown in Scheme **111** readily explains the unusual transfer of CO from Ir to Re. We propose that the reaction of **19** is initiated by loss of PPh3, as has been seen in other reactions of **19.20-21** Oxidative addition of Re-H to the coordinatively unsaturated intermediate **Scheme 111**

 $(PPh₃)₂(CO)$ IrH then produces a heterobimetallic trihydride. Rearrangement of this intermediate by simultaneous transfer of CO from Ir to Re and transfer of H from Re to Ir then produces $CpRe(CO)$ ₃ and coordinatively unsaturated $(PPh₃)₂IrH₃$, which is trapped by PPh,.

The hypothesis that a stable heterobimetallic dihydride might be isolable from the addition of $CpRe(CO)_2H_2$ to a second metal if no carbonyl were present on the second metal center was eventually shown to be valid. In a subsequent paper, we will present full details of our studies of the formation of the heterobimetallic dihyride $\text{Cp(CO)}_2(H)$ Re-Pt(H)(PPh₃)₂ (13) from the reaction of $\text{CpRe}(\text{CO})_2\text{H}_2$ (3) with $(\text{PPh}_3)_2\text{Pt}(\text{CH}_2=\text{CH}_2).4$

Experimental Section

General Methods. 'H NMR spectra were obtained on Bruker WP200, WP270, and AM500 spectrometers. 13 C and 31 P NMR spectra were obtained on a AM500 spectrometer operating at 126 and 202 MHz. ¹³C samples contained 0.07 M Cr(acac)₃ as a shiftless relaxation agent. Infrared spectra were obtained on a Mattson **FTlR** spectrometer or a Beckman IR 4230 spectrometer.

Reaction of $\text{CpRe}(\text{CO})_2\text{H}_2$ **(3) with trans-Ir(CO)(CI)(PPh₃)₂ (4) under CO. 3** (270 mg, 0.873 mmol) and 4 (644 mg, 0.825 mmol) were stirred in C_6H_6 (15 mL) for 13 days at 40 °C under 0.85 atm of CO. Upon the initial introduction of CO, the yellow slurry turned white and a white solid slowly precipitated from a yellow solution. Hexane (50 **mL)** was added under N_2 to complete the precipitation. The precipitate was isolated by filtration, washed with hexane, and dried under vacuum to give 1516 (475 mg, 74%) as a pale yellow solid, which was shown to be pure by ¹H NMR spectroscopy. ¹H NMR (C₆D₆, 270 MHz, hydride region): δ -6.68 (td, J_{PH} = 16.5 Hz, J_{HH} = 4.9 Hz, 1 H), -17.49 (td, J_{PH} = 13.2 Hz, J_{HH} = 4.9 Hz, 1 H).

The hydrocarbon solution was evaporated under vacuum, and the residue was sublimed at 60 °C to yield $CpRe(CO)$ ₃ (14)¹⁵ (267 mg, 91%) as a white solid. ¹H NMR $(C_6D_6, 200 MHz)$: δ 4.32 (s, C₅H₅). IR (hexane): 2032 **(m),** 1940 (s) cm-I.

Reaction of $\text{CpRe}(\text{CO})_2\text{H}_2$ **with** *trans***-Ir(CO)(Cl)(PPh₃)₂ (4) and PPh₃**. Complete dissolution occurred when a yellow slurry of 4 (585 mg, 0.750 mmol) in 20 mL of a benzene solution of 3 (225 **mg,** 0.727 mmol) and PPh₃ (220 mg, 0.839 mmol) was stirred for 30 h at 25 °C. Over the course of 7 days, a cream white precipitate formed. The precipitate was isolated by filtration and washed with hexane to give mer- $H_2Ir(PPh_3)_3Cl$ (16) (593 mg, 80%). 'H NMR **(C6D6,** 270 MHz, hydride region): 6 -10.67 (dtd, $J_{HP} = 130.3$ Hz, $J_{HP} = 19.8$ Hz, $J_{HH} = 4.9$ Hz, H trans to P), -20.49 (qd, $J_{HP} = 14.9$ Hz, $J_{HH} = 4.9$ Hz, H trans to Cl). The yellow filtrate was evaporated under vacuum, and the residue sublimed at 70 °C under high vacuum to give CpRe(CO)₃ (14) (195 mg, 80%).

Preparation of fac- and mer-IrH3(PPh3), (20) **from CpRe(CO),H, (3) and** $(PPh_3)_3(CO)IrH \cdot C_6H_3CH_3 (19 \cdot C_6H_3CH_3)$ **.** A solution of 3 (33) mg, 0.107 mmol) and 19.C6H5CH3 (1 12 mg, 0.102 mmol) in 20 **mL** of C_6H_6 was stirred for 5 days at 42 °C. The solvent was evaporated under vacuum, hexane (10 mL) was added, and the mixture was filtered. The resulting solid was washed with hexane (4 × 7 mL) and dried under vacuum to give a 1.8:1 mixture of fac- and mer-IrH₃(PPh₃)₃ (20) (77 mg, 77%). ¹H NMR (C₆D₆, 500 MHz): δ 6.8-7.7 (m, aromatic), -11.35 (dt, $fac-20$, -10.21 (q, $J_{PH} = J_{PH} = 16$ Hz, H trans to H in mer-20), -12.01 (dt, J_{PH} (rans) = 114.8 Hz, J_{PH} (cis) = 22 Hz, H trans to P in mer-20). ³¹P NMR (CD₂Cl₂, 202 MHz): *δ* 5.8 (br d, peak separation 100 Hz, fac-20), 12.8 (br d, peak separation 102 Hz, P trans to H in mer-20). 16.1 (br s, P trans to P in *mer*-20). IR (CH₂Cl₂): 2090 (w) cm⁻¹ (ν_{H-H}). 77%). ¹H NMR (C₆D₆, 500 MHz): δ 6.8–7.7 (m, aromatic), -11.35 (dt, AA'A'XX'X'', J_{PH(trans)} = 121 Hz, J_{PH}(cis) = -18 Hz, J_{PP} \sim 6 Hz,

⁽²⁸⁾ Kunin, **A.** J.; Johnson, C. E.; Maguire. J. A,; **Jones,** W. D.; Eisenberg, R. *J. Am. Chem.* **Soc.** 1987, *109,* 2963.